this post was submitted on 26 Jul 2023
14 points (88.9% liked)

Science

1224 readers
5 users here now

This magazine is dedicated to discussions on scientific discoveries, research, and theories across various fields, including physics, chemistry, biology, astronomy, and more. Whether you are a scientist, a science enthusiast, or simply curious about the world around us, this is the place for you. Here you can share your knowledge, ask questions, and engage in discussions on a wide range of scientific topics. From the latest breakthroughs to historical discoveries and ongoing research, this category covers a wide range of topics related to science.

founded 2 years ago
 

For the first time in the world, we succeeded in synthesizing the room-temperature superconductor (T(C) >= 400K, 127C) working at ambient pressure with a modified lead-apatite (LK-99) structure. The superconductivity of LK-99 is proved with the Critical temperature (T(C)), Zero-resistivity, Critical current (I(C)), Critical magnetic field (H(C)), and the Meissner effect. The superconductivity of LK-99 originates from minute structural distortion by a slight volume shrinkage (0.48 %), not by external factors such as temperature and pressure. The shrinkage is caused by Cu$^{2+}$ substitution of Pb$^{2+}$(2) ions in the insulating network of Pb(2)-phosphate and it generates the stress. It concurrently transfers to Pb(1) of the cylindrical column resulting in distortion of the cylindrical column interface, which creates superconducting quantum wells (SQWs) in the interface. The heat capacity results indicated that the new model is suitable for explaining the superconductivity of LK-99. The unique structure of LK-99 that allows the minute distorted structure to be maintained in the interfaces is the most important factor that LK-99 maintains and exhibits superconductivity at room temperatures and ambient pressure.

top 6 comments
sorted by: hot top controversial new old
[–] Cow_says_moo 12 points 1 year ago

Would be nice if this would get peer reviewed and confirmed. Until then, I wouldn't count on this changing anything.

[–] [email protected] 2 points 1 year ago* (last edited 1 year ago) (1 children)

If room-temp superconductors can be manufactured at scale it will change a lot of things:

Room-temperature superconducting materials would lead to many new possibilities for practical applications, including ultraefficient electricity grids, ultrafast and energy-efficient computer chips, and ultrapowerful magnets that can be used to levitate trains and control fusion reactors. source

[–] [email protected] 5 points 1 year ago* (last edited 1 year ago) (1 children)

Note that the guy said if it gets peer reviewed. Many people have made many claims that would've changed the world as we know it, but until it gets repeated in controlled environments it doesn't change anything.

I think it's an achievable goal for sure. There's nothing I know of that makes room temperature anything but arbitrary so it could happen. If it did, yeah it changes a lot potentially.

[–] [email protected] 7 points 1 year ago (1 children)
[–] [email protected] 1 points 1 year ago* (last edited 1 year ago)

@Gentlegrrl from what i've gathered from the article in scientific american (#^https://www.scientificamerican.com/article/viral-new-superconductivity-claims-leave-many-scientists-skeptical/) it does sound suspicious, given that there is no explanation for what made this breakthrough possible.

load more comments
view more: next ›