this post was submitted on 18 Jan 2024
20 points (100.0% liked)

Free Open-Source Artificial Intelligence

2936 readers
2 users here now

Welcome to Free Open-Source Artificial Intelligence!

We are a community dedicated to forwarding the availability and access to:

Free Open Source Artificial Intelligence (F.O.S.A.I.)

More AI Communities

LLM Leaderboards

Developer Resources

GitHub Projects

FOSAI Time Capsule

founded 2 years ago
MODERATORS
 

Hello everyone, I have another exciting Mamba paper to share. This being an MoE implementation of the state space model.

For those unacquainted with Mamba, let me hit you with a double feature (take a detour checking out these papers/code if you don't know what Mamba is):

Now.. onto the MoE paper!

MoE-Mamba

Efficient Selective State Space Models with Mixture of Experts

Maciej Pióro, Kamil Ciebiera, Krystian Król, Jan Ludziejewski, Sebastian Jaszczur

State Space Models (SSMs) have become serious contenders in the field of sequential modeling, challenging the dominance of Transformers. At the same time, Mixture of Experts (MoE) has significantly improved Transformer-based LLMs, including recent state-of-the-art open-source models.

We propose that to unlock the potential of SSMs for scaling, they should be combined with MoE. We showcase this on Mamba, a recent SSM-based model that achieves remarkable, Transformer-like performance.

Our model, MoE-Mamba, outperforms both Mamba and Transformer-MoE. In particular, MoE-Mamba reaches the same performance as Mamba in 2.2x less training steps while preserving the inference performance gains of Mamba against the Transformer.

Category Hyperparameter Value
Model Total Blocks 8 (16 in Mamba)
dmodel 512
Feed-Forward df f 2048 (with Attention) or 1536 (with Mamba)
Mixture of Experts dexpert 2048 (with Attention) or 1536 (with Mamba)
Experts 32
Attention nheads 8
Training Training Steps 100k
Context Length 256
Batch Size 256
LR 1e-3
LR Warmup 1% steps
Gradient Clipping 0.5

MoE seems like the logical way to move forward with Mamba, at this point, I'm wondering could there anything else holding it back? Curious to see more tools and implementations compare against some of the other trending transformer-based LLM stacks.

no comments (yet)
sorted by: hot top controversial new old
there doesn't seem to be anything here