this post was submitted on 18 Dec 2023
10 points (91.7% liked)

Advent Of Code

885 readers
133 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 18 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 18: Lavaduct Lagoon

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

you are viewing a single comment's thread
view the rest of the comments
[โ€“] LeixB 2 points 11 months ago

Haskell

import Data.ByteString.Char8 (unpack)
import Data.Char (isDigit, isHexDigit)
import Relude
import qualified Relude.Unsafe as Unsafe
import Text.ParserCombinators.ReadP

data Dir = R | D | L | U deriving (Show, Eq)

type Pos = (Int, Int)

data Action = Action Dir Int deriving (Show, Eq)

parse :: ByteString -> Maybe [(Action, Action)]
parse = fmap fst . viaNonEmpty last . readP_to_S (sepBy1 parseAction (char '\n') <* char '\n' <* eof) . unpack
  where
    parseAction = do
      dir <- choice [U <$ char 'U', D <$ char 'D', L <$ char 'L', R <$ char 'R'] <* char ' '
      x <- Unsafe.read <$> munch1 isDigit <* char ' '
      y <- char '(' *> char '#' *> (Unsafe.read . ("0x" ++) <$> count 5 (satisfy isHexDigit))
      dir' <- choice [R <$ char '0', D <$ char '1', L <$ char '2', U <$ char '3'] <* char ')'
      return (Action dir x, Action dir' y)

vertices :: [Action] -> [Pos]
vertices = scanl' (flip step) origin
  where
    step (Action U n) = first $ subtract n
    step (Action D n) = first (+ n)
    step (Action L n) = second $ subtract n
    step (Action R n) = second (+ n)

origin :: Pos
origin = (0, 0)

area, perimeter, solve :: [Action] -> Int
area a = (`div` 2) . abs . sum $ zipWith (-) x y
  where
    (p, rp) = (origin :) &&& (++ [origin]) $ vertices a
    x = zipWith (*) (fst <$> p) (snd <$> rp)
    y = zipWith (*) (snd <$> p) (fst <$> rp)
perimeter = sum . fmap (\(Action _ n) -> n)
solve = area &&& (`div` 2) . perimeter >>> uncurry (+) >>> succ

part1, part2 :: [(Action, Action)] -> Int
part1 = solve . fmap fst
part2 = solve . fmap snd