this post was submitted on 17 Dec 2023
12 points (87.5% liked)

Advent Of Code

885 readers
133 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 18 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 17: Clumsy Crucible

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

you are viewing a single comment's thread
view the rest of the comments
[โ€“] LeixB 2 points 11 months ago

Haskell

import Data.Array.Unboxed
import qualified Data.ByteString.Char8 as BS
import Data.Char (digitToInt)
import Data.Heap hiding (filter)
import qualified Data.Heap as H
import Relude

type Pos = (Int, Int)

type Grid = UArray Pos Int

data Dir = U | D | L | R deriving (Eq, Ord, Show, Enum, Bounded, Ix)

parse :: ByteString -> Maybe Grid
parse input = do
  let l = fmap (fmap digitToInt . BS.unpack) . BS.lines $ input
      h = length l
  w <- fmap length . viaNonEmpty head $ l
  pure . listArray ((0, 0), (w - 1, h - 1)) . concat $ l

move :: Dir -> Pos -> Pos
move U = first pred
move D = first succ
move L = second pred
move R = second succ

nextDir :: Dir -> [Dir]
nextDir U = [L, R]
nextDir D = [L, R]
nextDir L = [U, D]
nextDir R = [U, D]

-- position, previous direction, accumulated loss
type S = (Int, Pos, Dir)

doMove :: Grid -> Dir -> S -> Maybe S
doMove g d (c, p, _) = do
  let p' = move d p
  guard $ inRange (bounds g) p'
  pure (c + g ! p', p', d)

doMoveN :: Grid -> Dir -> Int -> S -> Maybe S
doMoveN g d n = foldl' (>=>) pure . replicate n $ doMove g d

doMoves :: Grid -> [Int] -> S -> Dir -> [S]
doMoves g r s d = mapMaybe (flip (doMoveN g d) s) r

allMoves :: Grid -> [Int] -> S -> [S]
allMoves g r s@(_, _, prev) = nextDir prev >>= doMoves g r s

solve' :: Grid -> [Int] -> UArray (Pos, Dir) Int -> Pos -> MinHeap S -> Maybe Int
solve' g r distances target h = do
  ((acc, pos, dir), h') <- H.view h

  if pos == target
    then pure acc
    else do
      let moves = allMoves g r (acc, pos, dir)
          moves' = filter (\(acc, p, d) -> acc < distances ! (p, d)) moves
          distances' = distances // fmap (\(acc, p, d) -> ((p, d), acc)) moves'
          h'' = foldl' (flip H.insert) h' moves'
      solve' g r distances' target h''

solve :: Grid -> [Int] -> Maybe Int
solve g r = solve' g r (emptyGrid ((lo, minBound), (hi, maxBound))) hi (H.singleton (0, (0, 0), U))
  where
    (lo, hi) = bounds g
    emptyGrid = flip listArray (repeat maxBound)

part1, part2 :: Grid -> Maybe Int
part1 = (`solve` [1 .. 3])
part2 = (`solve` [4 .. 10])