this post was submitted on 20 Jul 2023
8 points (100.0% liked)

Actually Useful AI

1990 readers
1 users here now

Welcome! ๐Ÿค–

Our community focuses on programming-oriented, hype-free discussion of Artificial Intelligence (AI) topics. We aim to curate content that truly contributes to the understanding and practical application of AI, making it, as the name suggests, "actually useful" for developers and enthusiasts alike.

Be an active member! ๐Ÿ””

We highly value participation in our community. Whether it's asking questions, sharing insights, or sparking new discussions, your engagement helps us all grow.

What can I post? ๐Ÿ“

In general, anything related to AI is acceptable. However, we encourage you to strive for high-quality content.

What is not allowed? ๐Ÿšซ

General Rules ๐Ÿ“œ

Members are expected to engage in on-topic discussions, and exhibit mature, respectful behavior. Those who fail to uphold these standards may find their posts or comments removed, with repeat offenders potentially facing a permanent ban.

While we appreciate focus, a little humor and off-topic banter, when tasteful and relevant, can also add flavor to our discussions.

Related Communities ๐ŸŒ

General

Chat

Image

Open Source

Please message @[email protected] if you would like us to add a community to this list.

Icon base by Lord Berandas under CC BY 3.0 with modifications to add a gradient

founded 1 year ago
MODERATORS
 

Weโ€™re rolling out custom instructions to give you more control over how ChatGPT responds. Set your preferences, and ChatGPT will keep them in mind for all future conversations.

@AutoTLDR

you are viewing a single comment's thread
view the rest of the comments
[โ€“] [email protected] 2 points 1 year ago

Ahoy there, matey! Set yer sails for a grand voyage into the realm of fractional calculus, where we be explorin' the mysterious depths of plasticine body deformations. Avast, it may sound complex, but fear not, for I'll break it down for ye in true pirate fashion!

Picture yerself a lump of plasticine, aye? When ye press or pull on it, it stretches and squishes, changin' shape. Now, regular calculus be good for describin' how things change over whole numbers o' time, but what if we want to know how our plasticine be changin' over a fraction o' time? That's where fractional calculus comes in!

Instead o' simple derivatives (that be tellin' us how things change over a whole unit o' time), fractional calculus uses fractional derivatives to describe how things be changin' over a fraction o' time. Arr, this be a mighty useful tool when ye be studyin' materials like plasticine that can deform in complex ways.

Ye see, the traditional derivatives be all about how things move and change in integer steps, like how far ye be movin' in one whole second. But in reality, some materials like plasticine be mighty peculiar, changin' their shape smoothly and gradually over a fraction o' time. Aye, think about how it stretches and squashes when ye be pressin' it real slow and gentle-like.

Fractional calculus be helpin' us capture this smooth behavior. It be dealin' with fractional orders o' differentiation and integration. A fractional derivative, which we call a "dervish" (not to be confused with a real dervish, the whirlin' Sufi dancer), lets us understand how our plasticine be changin' over a fraction o' time.

So when ye be modelin' deformations o' plasticine bodies, fractional calculus be a mighty fine approach to understandin' those gradual, fractional changes in shape. It be helpin' ye create more accurate and realistic models for yer plasticine adventures!

Now, ye be set to sail the seas of fractional calculus and tame the wild plasticine deformations, arr! May the wind be ever in yer favor, me hearty! Yo-ho-ho!

  • ChatGPT