Ask Science
Ask a science question, get a science answer.
Community Rules
Rule 1: Be respectful and inclusive.
Treat others with respect, and maintain a positive atmosphere.
Rule 2: No harassment, hate speech, bigotry, or trolling.
Avoid any form of harassment, hate speech, bigotry, or offensive behavior.
Rule 3: Engage in constructive discussions.
Contribute to meaningful and constructive discussions that enhance scientific understanding.
Rule 4: No AI-generated answers.
Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.
Rule 5: Follow guidelines and moderators' instructions.
Adhere to community guidelines and comply with instructions given by moderators.
Rule 6: Use appropriate language and tone.
Communicate using suitable language and maintain a professional and respectful tone.
Rule 7: Report violations.
Report any violations of the community rules to the moderators for appropriate action.
Rule 8: Foster a continuous learning environment.
Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.
Rule 9: Source required for answers.
Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.
By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.
We retain the discretion to modify the rules as we deem necessary.
view the rest of the comments
This is a question I see from time to time, and it's a good question to ask.
Your question as I understand it can be phrased another way as:
The difference is that, if you try to put a funny mask on the square root of -1 and treat it like a number, nothing breaks, but if you try the same thing with a division by zero, all sorts of things break.
If you define i = √-1, that is the only thing i can ever be. That specific quantity. You can factor it out of stuff, raise it to that exponent, whatever. And if it is ever convenient to do so, you can always unmask it back into that thing, e.g. i^2 = (√-1)^2 = -1. All the while, all the already existing rules of math stay true.
A division by zero isn't like this, because if you tried it, every number divided by zero would equal to the same thing. If we give it a name, say, 1 / 0 = z, then it would also be true that 2 / 0 = z. We could then solve both sides for zero:
1 / z = 0
2 / z = 0
then set them equal:
1 / z = 2 / z
then multiply both sides by z:
1 = 2
which is a contradiction.
i doesn't have this problem.
I'm curious, couldn't we define z as only 1/0? Then 2/0 would have to be factored to 2*(1/0) first and it would solve this specific example of things breaking. I haven't done advanced math in a while but your comment picked my curiosity haha
I remember 1/0 is pretty important in limits and stuff, it just seemed to me that this specific example seems not too hard to resolve
I'm fuzzy on the deeper details. I think you can do something like this, but you have to be very careful, in ways where you don't have to be so careful with ✓-1.
One of the more obvious ways to consider: plot a graph of y = 1 / x. Note how as x approaches zero from the right, the graph shoots up, asymptotically approaching the y-axis and shooting up to infinity. It's very tempting to say that 1 / 0 is "infinity". "Infinity" is not a real number, but nothing is stopping you from defining a new kind of number to represent this singularity if you want to. But at that point you have left the real numbers. Which is fine, right? Complex numbers aren't real numbers either, after all...
But look at the left side of the graph. You have the same behavior, but the graph shoots down, not up. It suggests that the limit of approaching from the left is "negative infinity". Quite literally the furthest possible imaginable thing from the "infinity" we had to define for the right side. But this is supposed to be the same value, at x = 0. Just by approaching it from different directions, we don't just get two different answers, we get perhaps the most different answers possible.
I think it's not hard to intuit a handwavey answer that this simply represents the curve of y = 1 / x "wrapping around through infinity" or some notion like that. Sure, perhaps that is what's going on. But dancing around a singularity like that mathematically isn't simple. The very nature of mathematical singularities is to give you nonsensical results. Generally, having them at all tends to be a sign that you have the wrong model for something.
You can mostly avoid this problem by snipping off the entire left half of the x-axis. Shrink your input domain to only non-negative numbers. Then, I believe, you can just slap "infinity" on it and run with it and be mostly fine. But that's a condition you have to be upfront about. This becomes a special case solution, not a generalized one.
I haven't looked into it, but I believe this singularity gets even more unweildy if you try to extend it to complex numbers. All the while, complex numbers "just work". You don't need doctor's gloves to handle them. √-1 isn't a mathematical singularity, it's a thing with an answer, the answer just isn't a real number.
Awesome, thank you for taking the time to explore it more, that makes sense to me
Seriously u/pixelscript that’s a really good explanation and I hope it’s right. My understanding of infinities is pretty limited but I’d like to subscribe to your newsletter.