this post was submitted on 16 Jun 2024
288 points (98.3% liked)
Asklemmy
44258 readers
1330 users here now
A loosely moderated place to ask open-ended questions
Search asklemmy π
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- [email protected]: a community for finding communities
~Icon~ ~by~ ~@Double_[email protected]~
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Hi-resolution audio, especially for streaming. The general idea is that listening to digital audio files that have a greater bit depth and sample rate than CD (24-bit/192Khz vs 16-bit/44.1 KHz) translates to better-sounding audio, but in practice that isn't the case.
For a detailed breakdown as to why, there's a great explanation here. But in summary, the format for CDs was so chosen because it covers enough depth and range to cover the full spectrum of human hearing.
So while "hi-res" audio does contain a lot more information (which, incidentally, means it uses up significantly more data/storage space and costs more money), our ears aren't capable of hearing it in the first place. Certain people may try to argue otherwise based on their own subjective experience, but to that I say "the placebo effect is a helluva drug."
All of this is very true, but this is the only issue I really disagree with here.
I am in an era where a good quality rip of a movie can be almost 50 gigabytes by itself. That means for every terabyte of storage, I can store just 20 of movies of this size.
Don't even get my started on television series and how big those can balloon to with the same kind of encoding.
An entire collection of FLACs, thousands of albums worth, is still less than 500 gigabytes total, in other words half a terabyte. (My personal collection anyway)
I mean, the average size of one of my FLAC albums is around 200-300 megabytes. Even with the larger "hi-res" FLAC files you're still not getting as obscenely big as movie and television files.
Sure, it takes up more space than an MP3 or a FLAC properly encoded to CD standards (my preferred choice, for the reasons outlined above), but realistically, the amount of space it takes up compared to those is negligible when compared to other types of media.
Storage and energy to operate storage has become incredibly cheap, especially when you're dealing with smaller files like this.
50 GB for a BRD rip is one that is not re-encoded, thatβs a straight rip from the disk.
50GB for the simple dual layer discs. You can theoretically reach 100GB with triple layer disks. The largest BDRip I have is 90GB for the Super Mario Bros. Movie.
Edit: UHD Blu-ray only supports dual and triple layer disks, not quad. Quad layer discs do exist though, with up to 128GB of capacity.