Ask Science
Ask a science question, get a science answer.
Community Rules
Rule 1: Be respectful and inclusive.
Treat others with respect, and maintain a positive atmosphere.
Rule 2: No harassment, hate speech, bigotry, or trolling.
Avoid any form of harassment, hate speech, bigotry, or offensive behavior.
Rule 3: Engage in constructive discussions.
Contribute to meaningful and constructive discussions that enhance scientific understanding.
Rule 4: No AI-generated answers.
Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.
Rule 5: Follow guidelines and moderators' instructions.
Adhere to community guidelines and comply with instructions given by moderators.
Rule 6: Use appropriate language and tone.
Communicate using suitable language and maintain a professional and respectful tone.
Rule 7: Report violations.
Report any violations of the community rules to the moderators for appropriate action.
Rule 8: Foster a continuous learning environment.
Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.
Rule 9: Source required for answers.
Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.
By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.
We retain the discretion to modify the rules as we deem necessary.
view the rest of the comments
I see what you mean... I think. Let's see if I can be more specific:
Considering that time slows down for particles moving near lightspeed, I was trying to visualize the universe immediately after the Big Bang, if it being so hot - or energetic, I think I mean to say - made time slow down in the entire, still tiny universe. And what effect this may have possibly had in the outcome we observe today.
Surely time had also only just sprung into being so shortly after the big bang? If "everything" was moving near C, there was no "other" time to be relative to?
Yeah... what are the dynamics of such an extreme moment? How does a moment like that unfold from the perspective of a particle that was there?
Does time "start slow" before reaching the "stable rhythm" we experience today?
The fact that I felt compelled to use quotes twice in the previous sentence betrays the fact that I don't even know how to ask what I'm trying to ask.
I think these are all excellent questions, but to my limited knowledge they haven't been answered yet. I think these are all active areas of research in cosmology.
They are fun to wonder about though. If you have a deep interest maybe check out your library or bookstore. Once in a while scientists in these fields will write a book about their work in these areas.