this post was submitted on 15 Jun 2023
3 points (100.0% liked)
Learn Machine Learning
524 readers
1 users here now
Welcome! This is a place for people to learn more about machine learning techniques, discuss applications and ask questions.
Example questions:
- "Should I use a deep neural network for my audio classification task?"
- "I'm working with a small dataset, what can I do to make my model generalize well?"
- "Is there a library available that implements function X in language Y?"
- "I want to learn more about the math behind machine learning technique A, where should I start?"
Please do:
- Be kind to new people
- Post guides and tutorials that you find helpful
- Link to open/free sources instead of paywalled when possible
Please don't:
- Post news articles / memes (there are other machine learning/AI communities for this)
Other communities in this area:
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
Similar subreddits: r/MLquestions, r/askmachinelearning, r/learnmachinelearning
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Original answer:
Scaling the dataset before passing it to the autoencoder is usually how I do it, you don't need to rescale after if you are only using the encoder portion (for example for dimensionality reduction). If you don't do it linearly (aka (x-min(x))/(max(x)-min(x) ) and use exp or log to do it then be mindful that it would likely have an impact with respect to loss/optimization behaviour.
Make sure to take the max and min values from the training data then apply it to the testing (in the case of values out of bounds, set them to the boundary value but this shouldn't have a big impact if your training dataset is large enough with enough variance).