this post was submitted on 09 Dec 2024
24 points (96.2% liked)
Advent Of Code
920 readers
1 users here now
An unofficial home for the advent of code community on programming.dev!
Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.
AoC 2024
Solution Threads
M | T | W | T | F | S | S |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 |
Rules/Guidelines
- Follow the programming.dev instance rules
- Keep all content related to advent of code in some way
- If what youre posting relates to a day, put in brackets the year and then day number in front of the post title (e.g. [2024 Day 10])
- When an event is running, keep solutions in the solution megathread to avoid the community getting spammed with posts
Relevant Communities
Relevant Links
Credits
Icon base by Lorc under CC BY 3.0 with modifications to add a gradient
console.log('Hello World')
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Thanks! your Haskell solution is extremely fast and I don't understand your solution, too. ๐ lol
My latest revision just keeps a dict with lists of known empty slots with the length being the dict key, including partially filled slots. I iteratively find the slot that has the lowest index number and make sure the lists are properly ordered from lowest to highest index number.
looking at the challenge example/description, it shows a first pass only type of "fragmenting". we can be confident that if something did not fit, it can just stay in the same spot even if another slot frees up enough space for it to fit. so just checking if current index is lower than the lowest index number of any of the slot lengths would just be enough to stop early. That is why I got rid of
last_consecutive_full_partition
because it was slowing it down by up to 2 seconds.in example, even if
5555
,6666
, or8888
can fit in the new spot created by moving44
, they are staying put. Thus a first pass only sort from back to front.Thank you for the detailed explanation!, it made me realize that our solutions are very similar. Instead of keeping a
Dict[Int, List[Int]]
where the value list is ordered I have aDict[Int, Tree[Int]]
which allows for easy (and fast!) lookup due to the nature of trees. (Also lists in haskell are horrible to mutate)I also apply the your technique of only processing each file once, instead of calculating the checksum afterwards on the entire list of file blocks I calculate it all the time whenever I process a file. Using some maths I managed to reduce the sum to a constant expression.
yeah, I was a bit exhausted thinking in a high level abstract way. I do think that if I do the checksum at the same time I could shave off a few more milliseconds. though it is at like the limits of speed, especially for python with limited data types(no trees lol). Decently fast enough for me :)
edit: I also just tested it and splitting into two lists gave no decent speed up and made it slower. really iterating backwards is fast with that list slice. I can't think of another way to speed it up past it can do rn
Thank you for trying, oh well. Maybe we are simply at the limits.
no way, someone is able to do it in O(n) time with OCaml. absolutely nutty. lol
Thank you for the link, this is crazy!
so if I look at each part of my code. the first 4 lines will take 20 ms
The part1 for loop will take 10 ms.
The for loop to set up
next_empty_slot_by_length
will take another 10 ms.The part2 for loop will take 10 ms, too!
and adding up the part2 checksums will add another 10 ms.
So, in total, it will do it in ~60 ms, but python startup overhead seems to add 20-40 ms depending if you are on Linux(20 ms) or Windows(40 ms). both are Host, not virtual. Linux usually has faster startup time.
I am not sure where I would see a speed up. It seems that the startup overhead makes this just slower than the other top performing solutions which are also hitting a limit of 40-60 ms.